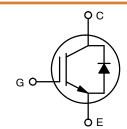
onsemi

IGBT for Automotive Applications

BV _{CES}	V _{CE(sat)} TYP	۱ _C
650 V	1.55 V	40 A

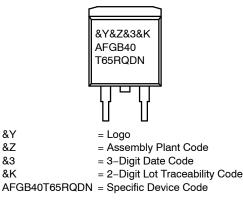
650 V, 40 A

AFGB40T65RQDN


Using novel field stop IGBT technology, **onsemi**'s new series of FS4 IGBTs offer the optimum performance for automotive applications. This technology is Short circuit rated and offers high figure of merit with low conduction and switching losses.

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.55 \text{ V} (Typ.) @ I_C = 40 \text{ A}$
- 100% of the Parts Tested for ILM (Note 2)
- High Input Impedance
- Fast Switching
- Tightened Parameter Distribution
- This Device is Pb-Free and RoHS Compliant


Typical Applications

- E-compressor for HEV/EV
- PTC Heater for HEV/EV

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
AFGB40T65RQDN	D2PAK (TO-263)	800 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise stated)

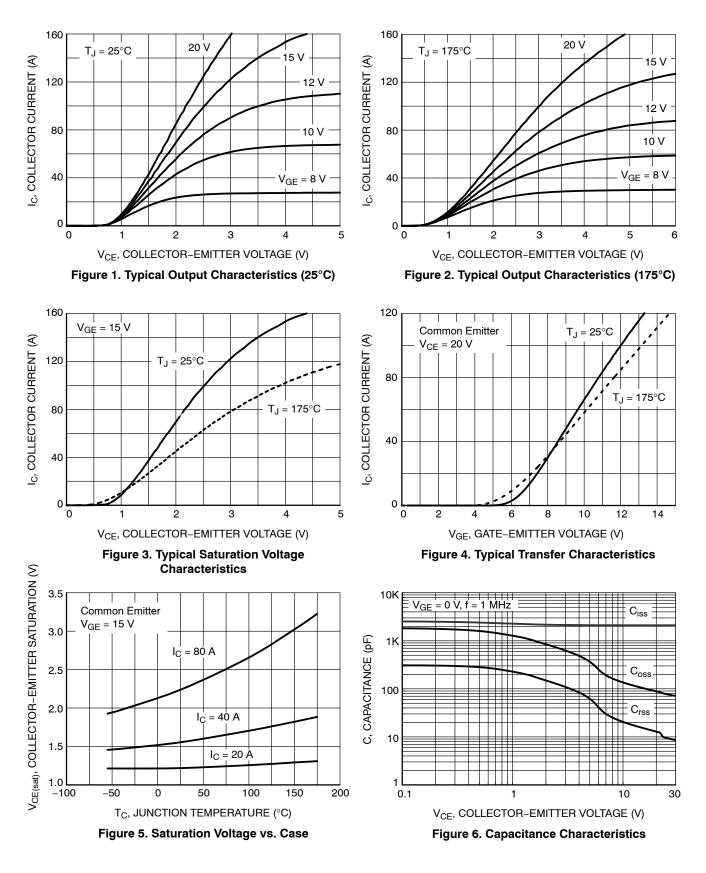
Parameter	Symbol	Value	Unit	
Collector to Emitter Voltage	V _{CES}	650	V	
Gate to Emitter Voltage Transient Gate to Emitter Voltage $T_{pulse} = 5 \ \mu s, D < 0.10$	V _{GES}	±20 ±30	V	
Collector Current (Note 1) $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	Ι _C	68 40	A	
Pulsed Collector Current (Note 2)	I _{LM}	160	А	
Pulsed Collector Current (Note 3)	I _{CM}	160	А	
Diode Forward Current (Note 1) $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	IF	68 40	A	
Pulsed Diode Maximum Forward Current	I _{FM}	160	А	
Non–Repetitive Forward Surge Current (Half – Sine Pulse, tp = 8.3 ms, $T_C = 25^{\circ}C$) (Half – Sine Pulse, tp = 8.3 ms, $T_C = 150^{\circ}C$)	I _{F,} SM	136 118	A	
Short Circuit Withstand Time V_{GE} = 15 V, V_{CC} = 400 V, T_{C} = 150°C	T _{SC}	5	μs	
Maximum Power Dissipation $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	PD	339.37 169.68	W	
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +175	°C	
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5 seconds	TL	265	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Value limited by bond wire.

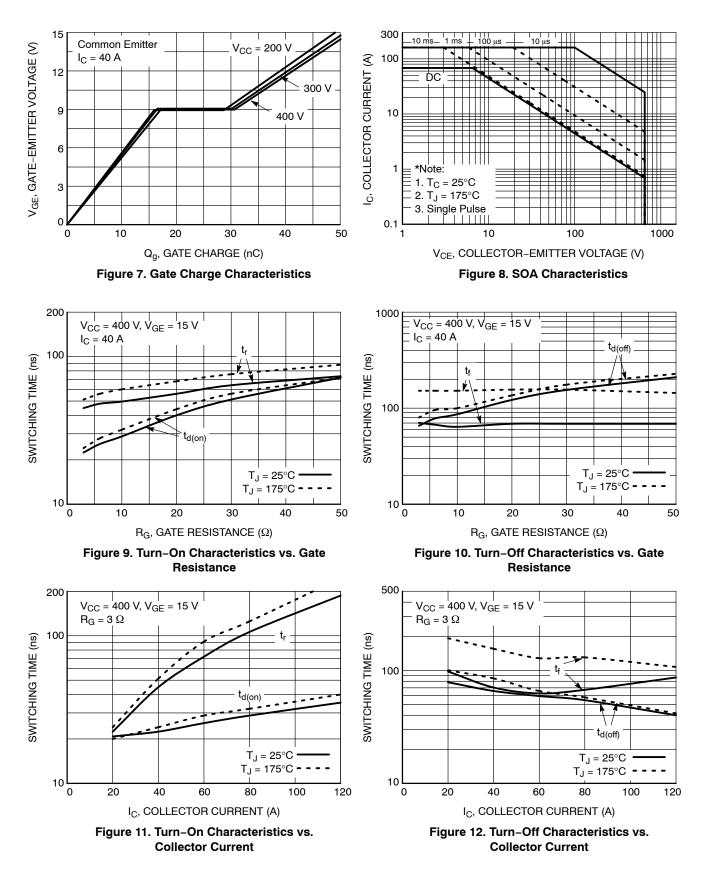
2. $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 120 \text{ A}, R_G = 100 \Omega$, Inductive Load, 100% Tested. 3. Repetitive rating: pulse width limited by max. Junction temperature.

THERMAL RESISTANCE RATINGS

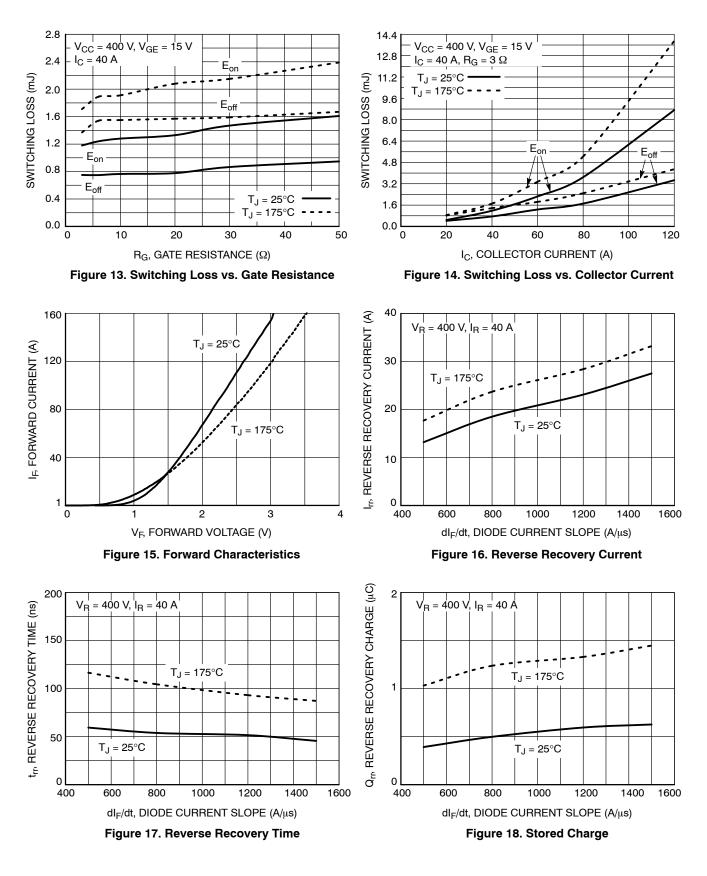
Parameter	Symbol	Min	Тур	Мах	Unit
Thermal Resistance Junction-to-Case, for IGBT	R _{θJC}	-	0.34	0.44	°C/W
Thermal Resistance Junction-to-Case, for Diode	R _{θJC}	-	0.79	1.03	
Thermal Resistance Junction-to-Ambient	R _{0JA}	-	-	40	

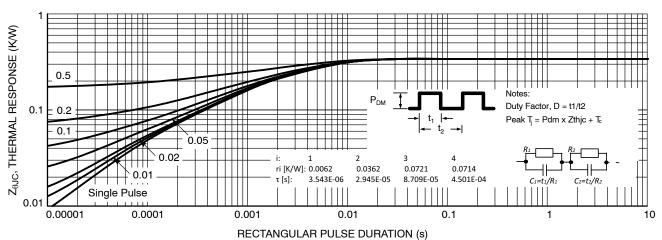

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-to-Emitter Breakdown Voltage, Gate-Emitter Short-Circuited	BV _{CES}	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta {\rm BV}_{\rm CES}/ \Delta {\rm T}_{\rm J}$	V_{GE} = 0 V, I _C = 1 mA	-	0.62	_	V/°C
Collector-Emitter Cut-Off Current, Gate-Emitter Short-Circuited	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	30	μΑ
Gate Leakage Current, Collector-Emitter Short-Circuited	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTERISTICS		-		•		
Gate-Emitter Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 40$ mA	3.75	4.90	6.05	V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I_{C} = 40 A, V_{GE} = 15 V, T_{J} = 25°C	-	1.55	1.82	V
		I_{C} = 40 A, V_{GE} = 15 V, T_{J} = 175°C	-	1.90	-	V
DYNAMIC CHARACTERISTICS		-				
Input Capacitance	C _{ies}	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	_	2100	-	pF
Output Capacitance	C _{oes}		-	71	-	
Reverse Transfer Capacitance	C _{res}		_	9	-	1
Gate Resistance	Rg	FREQ = 1 MHz	-	14	-	Ω
Gate Charge Total	Qg	V_{CE} = 400 V, I_{C} = 40 A, V_{GE} = 15 V	-	51	-	nC
Gate-Emitter Charge	Q _{ge}		_	17	-	
Gate-Collector Charge	Q _{gc}		-	14	-	
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD	-				
Turn-On Delay Time	t _{d(on)}	$T_J = 25^{\circ}C, V_{CC} = 400 V, I_C = 20 A,$	—	21	-	ns
Rise Time	t _r	R _g = 3 Ω, V _{GE} = 15 V, Inductive Load	_	21	-	
Turn-Off Delay Time	t _{d(off)}		_	77	-	
Fall Time	t _f		_	94	_	
Turn-On Switching Loss	E _{on}		_	0.47	_	mJ
Turn-Off Switching Loss	E _{off}		_	0.42	-	
Total Switching Loss	E _{ts}		_	0.89	-	
Turn-On Delay Time	t _{d(on)}	$T_J = 25^{\circ}C, V_{CC} = 400 V, I_C = 40 A,$	—	22	-	ns
Rise Time	t _r	R _g = 3 Ω, V _{GE} = 15 V, Inductive Load	_	45	-	
Turn-Off Delay Time	t _{d(off)}		_	66	-	
Fall Time	t _f		_	74	-	
Turn-On Switching Loss	E _{on}	1	_	1.18	-	mJ
Turn-Off Switching Loss	E _{off}		_	0.75	-	
Total Switching Loss	E _{ts}		_	1.93	-	
Turn-On Delay Time	t _{d(on)}	T_J = 175°C, V_{CC} = 400 V, I_C = 20 A, R_g = 3 $\Omega, \ V_{GE}$ = 15 V, Inductive Load	-	20	-	ns
Rise Time	t _r		_	24	-	1
Turn-Off Delay Time	t _{d(off)}		_	96	_	1
Fall Time	t _f		_	192	_	1
Turn-On Switching Loss	Eon	1	_	0.79	_	mJ
Turn-Off Switching Loss	E _{off}	-	_	0.88	_	-
Total Switching Loss	E _{ts}		_	1.67	_	


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, INC	OUCTIVE LOAD		•			
Turn-On Delay Time	t _{d(on)}	$\begin{array}{l} T_J = 175^\circ C, \ V_{CC} = 400 \ V, \ I_C = 40 \ A, \\ R_g = 3 \ \Omega, \ V_{GE} = 15 \ V, \\ Inductive \ Load \end{array}$	-	24	-	ns
Rise Time	t _r		-	51	-	
Turn-Off Delay Time	t _{d(off)}		-	80	_	
Fall Time	t _f		-	152	_	
Turn-On Switching Loss	E _{on}		-	1.71	_	mJ
Turn-Off Switching Loss	E _{off}		-	1.37	_	
Total Switching Loss	E _{ts}		-	3.08	_	
DIODE CHARACTERISTICS						
Diode Forward Voltage $V_F = \frac{T_J = 25^{\circ}C, I_F = 40 \text{ A}}{T_J = 175^{\circ}C, I_F = 40 \text{ A}}$	V _F	$T_J = 25^{\circ}C, I_F = 40 A$	-	1.68	2.10	V
	$T_{J} = 175^{\circ}C, I_{F} = 40 \text{ A}$	-	1.75	-		
DIODE SWITCHING CHARACTERISTI	C, INDUCTIVE L	OAD				
Reverse Recovery Energy	E _{REC}	T _J = 25°C, V _R = 400 V, I _F = 20 A, di _F /dt = 1000 A/µs	-	59	-	μJ
Diode Reverse Recovery Time	T _{rr}		-	40	-	ns
Diode Reverse Recovery Charge	Q _{rr}		-	413	-	nC
Reverse Recovery Energy	E _{REC}	$T_J = 25^{\circ}C$, $V_R = 400$ V, $I_F = 40$ A, $di_F/dt = 1000$ A/µs	-	85	-	μJ
Diode Reverse Recovery Time	T _{rr}		-	52	-	ns
Diode Reverse Recovery Charge	Q _{rr}		-	543	-	nC
Reverse Recovery Energy	E _{REC}	$T_J = 175^{\circ}C, V_R = 400 V,$ $I_F = 20 A, di_F/dt = 1000 A/\mu s$	-	203	-	μJ
Diode Reverse Recovery Time	T _{rr}		-	73	-	ns
Diode Reverse Recovery Charge	Q _{rr}		-	984	-	nC
Reverse Recovery Energy	E _{REC}	$T_J = 175^{\circ}C, V_R = 400 V,$	-	282	-	μJ
Diode Reverse Recovery Time	T _{rr}	I _F = 40 A, di _F /dt = 1000 A/μs	-	96	-	ns
Diode Reverse Recovery Charge	Q _{rr}		-	1334	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (Continued)

TYPICAL CHARACTERISTICS (Continued)

TYPICAL CHARACTERISTICS (Continued)

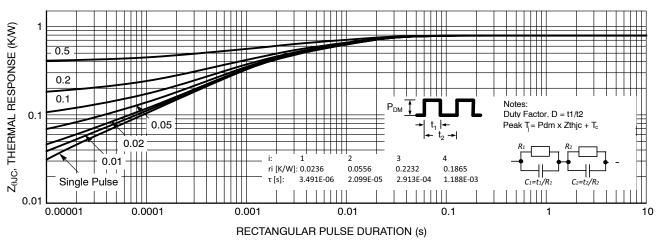
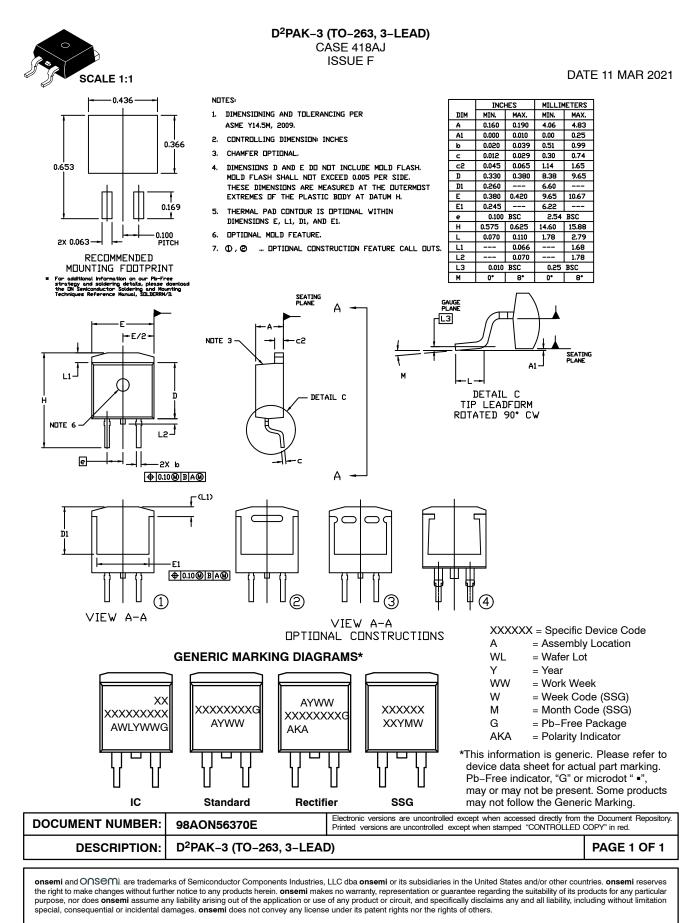



Figure 20. Transient Thermal Impedance of Diode

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>