# onsemi

## IGBT – Power, Co-PAK N-Channel, Field Stop VII (FS7), SCR, TO247-3L 1200 V, 1.67 V, 40 A

# AFGHL40T120RWD-STD

#### Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3–lead package, this device offers good performance with low on state voltage and low switching losses for both hard and soft switching topologies in automotive applications.

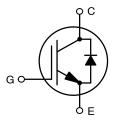
#### Features

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature  $T_J = 175^{\circ}C$
- Short Circuit Rated and Low Saturation Voltage
- Fast Switching and Tightened Parameter Distribution
- AEC-Q101 Qualified, PPAP Available Upon Request
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

#### Applications

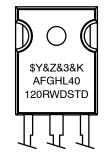
• Automotive E-compressor / Automotive EV PTC Heater / OBC

#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)


|                                                                                                                                                                                  |                                               | -               |      | 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------|------|---|
| Param                                                                                                                                                                            | Symbol                                        | Value           | Unit |   |
| Collector-to-Emitter Volta                                                                                                                                                       | V <sub>CE</sub>                               | 1200            | V    |   |
| Gate-to-Emitter Voltage                                                                                                                                                          |                                               | $V_{GE}$        | ±20  |   |
| Transient Gate-to-Emitte                                                                                                                                                         | er Voltage                                    |                 | ±30  |   |
| Collector Current                                                                                                                                                                | $T_{C} = 25^{\circ}C$                         | ۱ <sub>C</sub>  | 80   | Α |
|                                                                                                                                                                                  | $T_{\rm C} = 100^{\circ}{\rm C}$              |                 | 40   |   |
| Power Dissipation                                                                                                                                                                | $T_{\rm C} = 25^{\circ}{\rm C}$               | PD              | 468  | W |
|                                                                                                                                                                                  | $T_{\rm C} = 100^{\circ}{\rm C}$              |                 | 234  |   |
| Pulsed Collector<br>Current                                                                                                                                                      | T <sub>C</sub> = 25°C,<br>tp = 10 μs (Note 1) | I <sub>CM</sub> | 120  | А |
| Diode Forward Current                                                                                                                                                            | $T_{\rm C} = 25^{\circ}{\rm C}$               | ١ <sub>F</sub>  | 80   |   |
|                                                                                                                                                                                  | $T_{\rm C} = 100^{\circ}{\rm C}$              |                 | 40   |   |
| $ \begin{array}{l} \mbox{Pulsed Diode Maximum} \\ \mbox{Forward Current} \end{array}  \begin{array}{l} T_{C} = 25^{\circ}C, \\ \mbox{tp} = 10 \ \mu s \ (Note \ 1) \end{array} $ |                                               | I <sub>FM</sub> | 120  |   |
| Short Circuit Withstand T $V_{GE}$ = 15 V, $V_{CC}$ = 800 V,                                                                                                                     | T <sub>SC</sub>                               | 6               | μs   |   |
| Operating Junction and S<br>Range                                                                                                                                                | T <sub>J</sub> , T <sub>stg</sub>             | – 55 to<br>+175 | °C   |   |
| Lead Temperature for Sol                                                                                                                                                         | Lead Temperature for Soldering Purposes       |                 |      |   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: Pulse width limited by max. junction temperature


| BV <sub>CES</sub> | V <sub>CE(sat)</sub> TYP | I <sub>C</sub> MAX |
|-------------------|--------------------------|--------------------|
| 1200 V            | 1.67 V                   | 40 A               |

## **PIN CONNECTIONS**





#### MARKING DIAGRAM



- \$Y = onsemi Logo
- &Z = Assembly Plant Code
- &3 = 3–Digit Date Code
- &K = 2-Digit Lot Traceability Code

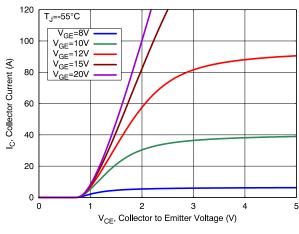
AFGHL40120RWDSTD = Specific Device code

#### **ORDERING INFORMATION**

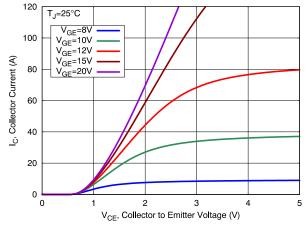
| Device             | Package                | Shipping           |
|--------------------|------------------------|--------------------|
| AFGHL40T120RWD-STD | TO-247-3L<br>(Pb-Free) | 30 Units /<br>Tube |

#### THERMAL CHARACTERISTICS

| Parameter                                      | Symbol           | Value | Unit |
|------------------------------------------------|------------------|-------|------|
| Thermal Resistance, Junction-to-Case for IGBT  | $R_{\theta JC}$  | 0.32  | °C/W |
| Thermal Resistance, Junction-to-Case for Diode | $R_{\theta JCD}$ | 0.59  |      |
| Thermal Resistance, Junction-to-Ambient        | $R_{	hetaJA}$    | 40    |      |


## **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise specified)

| Parameter                                                         | Symbol                         | Test Conditions                                                         | Min  | Тур  | Max  | Unit  |
|-------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------|------|------|------|-------|
| OFF CHARACTERISTICS                                               | <b>-</b>                       |                                                                         | -    | -    | -    | -     |
| Collector-to-Emitter Breakdown<br>Voltage                         | BV <sub>CES</sub>              | $V_{GE}$ = 0 V, I <sub>C</sub> = 1 mA                                   | 1200 | -    | _    | V     |
| Collector-to-Emitter Breakdown<br>Voltage Temperature Coefficient | $\Delta BV_{CES}/\Delta T_{J}$ | $V_{GE}$ = 0 V, I <sub>C</sub> = 9.99 mA                                | -    | 1226 | -    | mV/°C |
| Zero Gate Voltage Collector Current                               | I <sub>CES</sub>               | $V_{GE}$ = 0 V, $V_{CE}$ = $V_{CES}$                                    | -    | -    | 40   | μA    |
| Gate-to-Emitter Leakage Current                                   | I <sub>GES</sub>               | $V_{GE}$ = ±20 V, $V_{CE}$ = 0 V                                        | -    | -    | ±400 | nA    |
| ON CHARACTERISTICS                                                |                                |                                                                         |      |      |      |       |
| Gate Threshold Voltage                                            | V <sub>GE(th)</sub>            | $V_{GE} = V_{CE}$ , $I_C = 40$ mA                                       | 5.1  | 6    | 6.9  | V     |
| Collector-to-Emitter Saturation                                   | V <sub>CE(sat)</sub>           | $V_{GE}$ = 15 V, I <sub>C</sub> = 40 A, T <sub>J</sub> = 25°C           | -    | 1.67 | 2.00 | V     |
| Voltage                                                           |                                | $V_{GE}$ = 15 V, $I_{C}$ = 40 A, $T_{J}$ = 175°C                        | -    | 2.12 | -    | 1     |
| DYNAMIC CHARACTERISTICS                                           |                                |                                                                         |      |      |      |       |
| Input Capacitance                                                 | C <sub>IES</sub>               | $V_{CE}$ = 30 V, $V_{GE}$ = 0 V, f = 1 MHz                              | -    | 3054 | -    | pF    |
| Output Capacitance                                                | C <sub>OES</sub>               |                                                                         | -    | 126  | -    | 1     |
| Reverse Transfer Capacitance                                      | C <sub>RES</sub>               |                                                                         | -    | 15.4 | -    |       |
| Total Gate Charge                                                 | Q <sub>G</sub>                 | $V_{CE}$ = 600 V, $V_{GE}$ = 15 V, $I_{C}$ = 40 A                       | -    | 112  | -    | nC    |
| Gate-to-Emitter Charge                                            | $Q_GE$                         |                                                                         | -    | 29.6 | -    |       |
| Gate-to-Collector Charge                                          | Q <sub>GC</sub>                |                                                                         | -    | 51.2 | -    |       |
| SWITCHING CHARACTERISTICS                                         |                                |                                                                         |      |      |      |       |
| Turn-On Delay Time                                                | t <sub>d(on)</sub>             |                                                                         | -    | 35.6 | -    | ns    |
| Turn-Off Delay Time                                               | t <sub>d(off)</sub>            |                                                                         | -    | 188  | -    | 1     |
| Rise Time                                                         | t <sub>r</sub>                 |                                                                         | -    | 29.2 | -    |       |
| Fall Time                                                         | t <sub>f</sub>                 |                                                                         | -    | 145  | -    |       |
| Turn-On Switching Loss                                            | E <sub>on</sub>                |                                                                         | -    | 1.11 | -    | mJ    |
| Turn-Off Switching Loss                                           | E <sub>off</sub>               |                                                                         | -    | 0.99 | -    |       |
| Total Switching Loss                                              | E <sub>ts</sub>                |                                                                         | _    | 2.1  | -    |       |
| Turn-On Delay Time                                                | t <sub>d(on)</sub>             | $V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V},$                        | -    | 40.1 | -    | ns    |
| Turn-Off Delay Time                                               | t <sub>d(off)</sub>            | I <sub>C</sub> = 40 A, R <sub>G</sub> = 4.7 Ω,<br>T <sub>J</sub> = 25°C | _    | 152  | -    |       |
| Rise Time                                                         | t <sub>r</sub>                 |                                                                         | _    | 55.4 | -    |       |
| Fall Time                                                         | t <sub>f</sub>                 |                                                                         | _    | 90.6 | -    |       |
| Turn-On Switching Loss                                            | E <sub>on</sub>                |                                                                         | -    | 3.27 | _    | mJ    |
| Turn–Off Switching Loss                                           | E <sub>off</sub>               |                                                                         | -    | 1.27 | _    |       |
| Total Switching Loss                                              | E <sub>ts</sub>                |                                                                         | _    | 4.54 | _    | 1     |


## **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise specified)

| Parameter                     | Symbol              | Test Conditions                                                          | Min | Тур  | Max  | Unit |
|-------------------------------|---------------------|--------------------------------------------------------------------------|-----|------|------|------|
| SWITCHING CHARACTERISTICS     |                     |                                                                          |     |      |      |      |
| Turn-On Delay Time            | t <sub>d(on)</sub>  | V <sub>CE</sub> = 600 V, V <sub>GE</sub> = 15 V,                         | -   | 40.5 | -    | ns   |
| Turn-Off Delay Time           | t <sub>d(off)</sub> | I <sub>C</sub> = 20 A, R <sub>G</sub> = 4.7 Ω,<br>T <sub>J</sub> = 175°C | -   | 256  | _    |      |
| Rise Time                     | t <sub>r</sub>      |                                                                          | -   | 38.8 | -    |      |
| Fall Time                     | t <sub>f</sub>      |                                                                          | -   | 282  | -    |      |
| Turn-On Switching Loss        | E <sub>on</sub>     |                                                                          | -   | 1.58 | -    | mJ   |
| Turn-Off Switching Loss       | E <sub>off</sub>    |                                                                          | -   | 1.8  | -    |      |
| Total Switching Loss          | E <sub>ts</sub>     |                                                                          | -   | 3.38 | -    |      |
| Turn-On Delay Time            | t <sub>d(on)</sub>  | $V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V},$                         | -   | 46.8 | -    | ns   |
| Turn-Off Delay Time           | t <sub>d(off)</sub> | I <sub>C</sub> = 40 A, R <sub>G</sub> = 4.7 Ω,<br>T <sub>J</sub> = 175°C | -   | 199  | -    |      |
| Rise Time                     | t <sub>r</sub>      |                                                                          | -   | 70.7 | -    |      |
| Fall Time                     | t <sub>f</sub>      |                                                                          | -   | 167  | -    |      |
| Turn-On Switching Loss        | E <sub>on</sub>     |                                                                          | -   | 4.74 | -    | mJ   |
| Turn–Off Switching Loss       | E <sub>off</sub>    |                                                                          | -   | 2.19 | -    |      |
| Total Switching Loss          | E <sub>ts</sub>     |                                                                          | -   | 6.93 | -    |      |
| DIODE CHARACTERISTICS         |                     |                                                                          |     |      |      |      |
| Forward Voltage               | V <sub>F</sub>      | $I_F = 40 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$                   | -   | 1.98 | 2.36 | V    |
|                               |                     | $I_F = 40 \text{ A},  \text{T}_\text{J} = 175^\circ\text{C}$             | -   | 2.04 | -    |      |
| DIODE SWITCHING CHARACTERIS   | TICS, INDUCTIVE     | LOAD                                                                     |     |      |      |      |
| Reverse Recovery Time         | t <sub>rr</sub>     | $V_{\rm R} = 600 \text{ V}, I_{\rm F} = 20 \text{ A},$                   | -   | 161  | -    | ns   |
| Reverse Recovery Charge       | Q <sub>rr</sub>     | $dI_F/dt = 500 \text{ A}/\mu \text{s}, T_J = 25^{\circ}\text{C}$         | -   | 1773 | -    | nC   |
| Reverse Recovery Energy       | E <sub>rec</sub>    |                                                                          | -   | 0.56 | -    | mJ   |
| Peak Reverse Recovery Current | I <sub>RRM</sub>    |                                                                          | -   | 25.8 | -    | А    |
| Reverse Recovery Time         | t <sub>rr</sub>     | $V_{\rm R} = 600 \text{ V}, I_{\rm F} = 40 \text{ A},$                   | -   | 194  | -    | ns   |
| Reverse Recovery Charge       | Q <sub>rr</sub>     | $dI_F/dt = 500 \text{ A/}\mu\text{s}, T_J = 25^{\circ}\text{C}$          | -   | 3123 | -    | nC   |
| Reverse Recovery Energy       | E <sub>rec</sub>    |                                                                          | -   | 0.81 | -    | mJ   |
| Peak Reverse Recovery Current | I <sub>RRM</sub>    |                                                                          | -   | 35.8 | -    | А    |
| Reverse Recovery Time         | t <sub>rr</sub>     | $V_{\rm R} = 600 \text{ V}, \text{ I}_{\rm F} = 20 \text{ A},$           | -   | 215  | -    | ns   |
| Reverse Recovery Charge       | Q <sub>rr</sub>     | dl <sub>F</sub> /dt = 500 A/µs, T <sub>J</sub> = 175°C                   | -   | 2768 | -    | nC   |
| Reverse Recovery Energy       | E <sub>rec</sub>    |                                                                          | -   | 1    | _    | mJ   |
| Peak Reverse Recovery Current | I <sub>RRM</sub>    |                                                                          | -   | 30.2 | -    | А    |
| Reverse Recovery Time         | t <sub>rr</sub>     | $V_{\rm R} = 600 \text{ V}, I_{\rm F} = 40 \text{ A},$                   | -   | 261  | -    | ns   |
| Reverse Recovery Charge       | Q <sub>rr</sub>     | $dI_F/dt = 500 \text{ A}/\mu \text{s}, T_J = 175^{\circ}\text{C}$        | -   | 5087 | -    | nC   |
| Reverse Recovery Energy       | E <sub>rec</sub>    |                                                                          | -   | 1.5  | -    | mJ   |
| Peak Reverse Recovery Current | I <sub>RRM</sub>    | 1                                                                        |     | 42.7 |      | А    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.









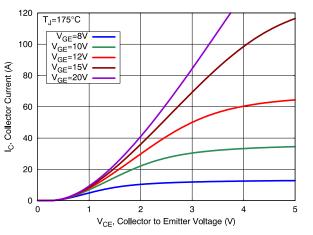



Figure 3. Output Characteristics

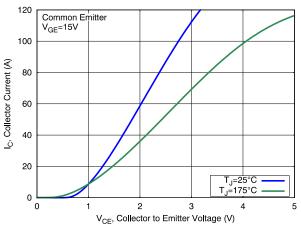



Figure 5. Saturation Characteristics

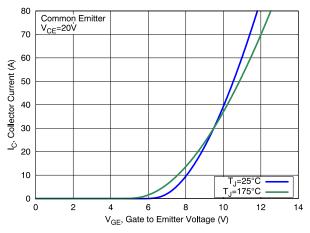
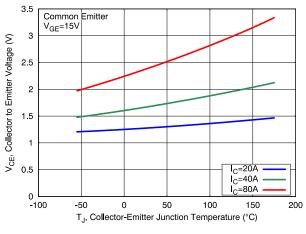




Figure 4. Transfer Characteristics





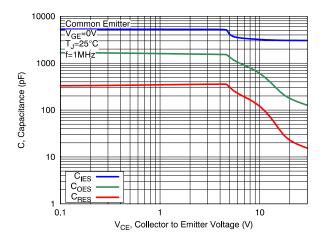



Figure 7. Capacitance Characteristics

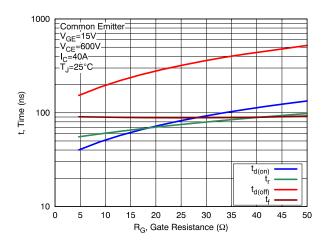



Figure 9. Switching Time vs Gate Resistance

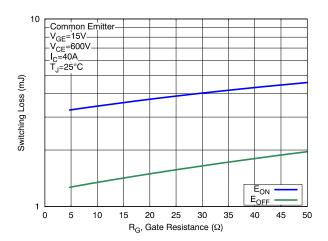



Figure 11. Switching Loss vs Gate Resistance

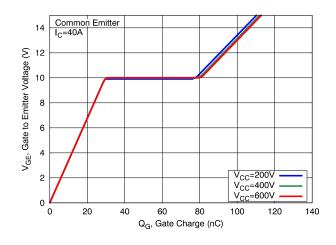



Figure 8. Gate Charge Characteristics

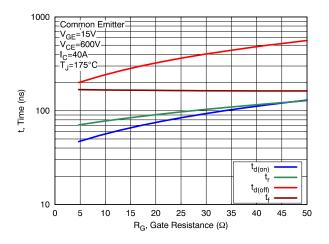
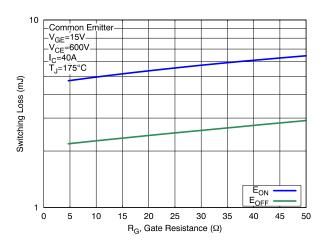
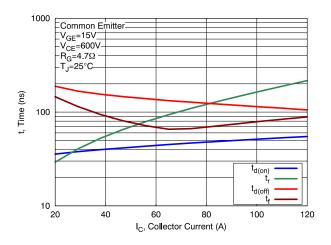
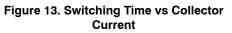
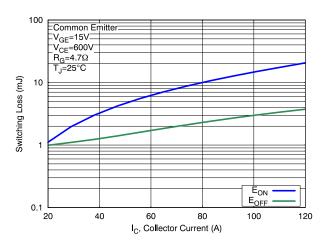
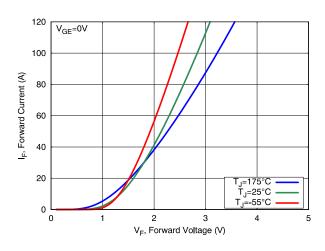
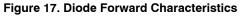



Figure 10. Switching Time vs Gate Resistance



Figure 12. Switching Loss vs Gate Resistance













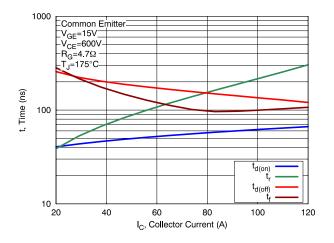




Figure 14. Switching Time vs Collector Current

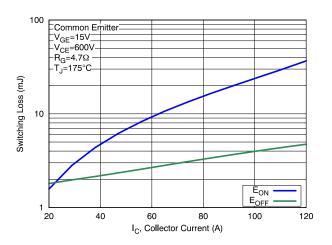



Figure 16. Switching Loss vs Collector Current

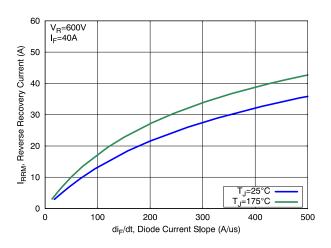
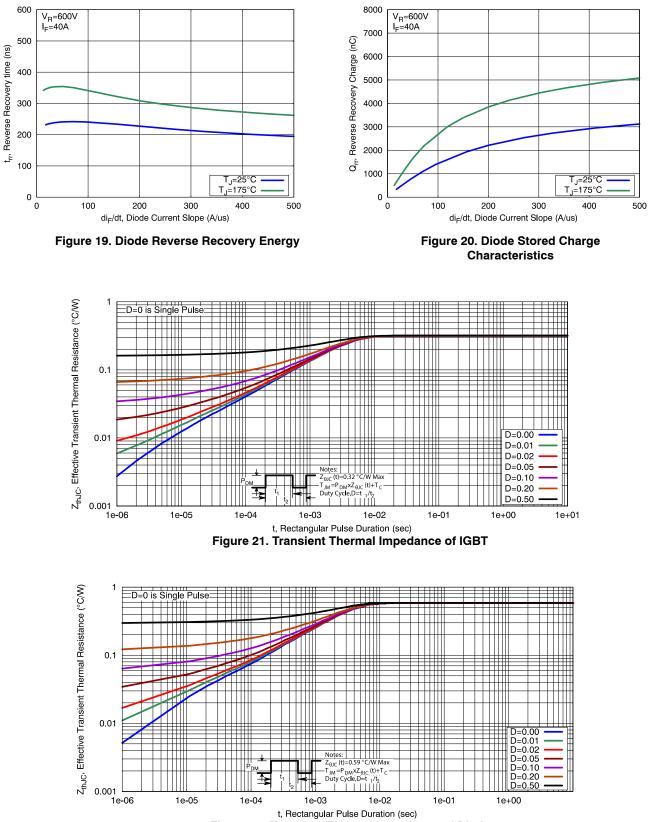
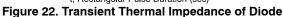
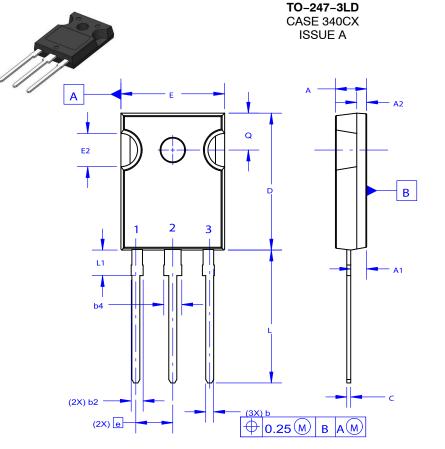






Figure 18. Diode Reverse Recovery Current









NOTES: UNLESS OTHERWISE SPECIFIED.

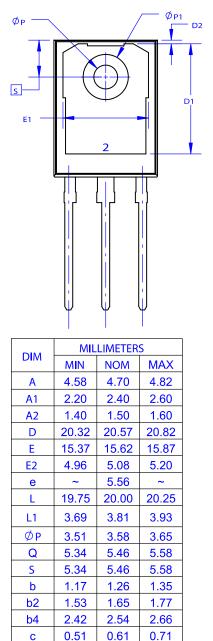
- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

γ

## GENERIC **MARKING DIAGRAM\*** Х



| XXXXX | = Specific Device Code |
|-------|------------------------|
| Α     | = Assembly Location    |


- = Assembly Location
- = Year
- ww = Work Week
- G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON93302G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TO-247-3LD  |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 06 JUL 2020



D1

D2

E1

ØP1

13.08

0.51

12.81

6.60

~

0.93

~

6.80

~

1.35

~

7.00

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent\_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>