IGBT – Hybrid, Field Stop, Trench

650 V, 75 A, TO247

AFGHL75T65SQDC

Using the novel field stop 4th generation IGBT technology and the 1.5th generation SiC Schottky Diode technology, AFGHL75T65SQDC offers the optimum performance with both low conduction and switching losses for high efficiency operations in various applications, especially totem pole bridgeless PFC and Inverter.

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.6 V (Typ.) @ I_C = 75 A$
- 100% of the Parts are Tested for I_{LM} (Note 2)
- Fast Switching
- Tight Parameter Distribution
- No Reverse Recovery/No Forward Recovery
- AEC–Q101 Qualified and PPAP Capable

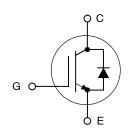
Typical Applications

- Automotive
- On & Off Board Chargers
- DC-DC Converters
- PFC
- Industrial Inverter

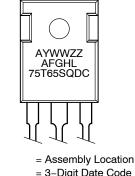
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-to-Emitter Voltage	V _{CES}	650	V
Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage	V _{GES}	±20 ±30	V
$ \begin{array}{c} \mbox{Collector Current (Note 1)} & @\ T_C = 25^\circ C \\ & @\ T_C = 100^\circ C \end{array} $	Ι _C	80 75	A
Pulsed Collector Current (Note 2)	I _{LM}	300	А
Pulsed Collector Current (Note 3)	I _{CM}	300	А
Diode Forward Current (Note 1)	lF	35 20	A
Pulsed Diode Maximum Forward Current	I _{FM}	200	А
$ \begin{array}{ll} \mbox{Maximum Power Dissipation} & @\ T_C = 25^\circ C \\ & @\ T_C = 100^\circ C \end{array} $	P _D	375 188	W
Operating Junction / Storage Temperature Range	T _J , T _{STG}	–55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	265	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Value limited by bond wire
- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_C = 300 A, R_G = 15 Ω , Inductive Load, 100% of the Parts are Tested.
- 3. Repetitive Rating: pulse width limited by max. Junction temperature

ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

= 3-Digit Date Code
- 2 Digit Lot Traccability C

ZZ = 2-Digit Lot Traceability Code AFGHL75T65SQDC = Specific Device Code

Α

YWW

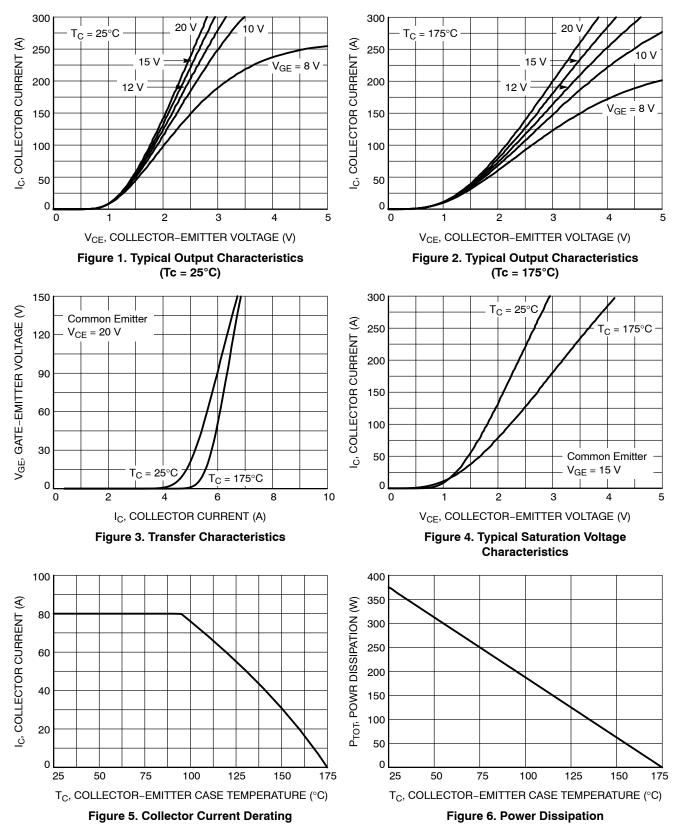
ORDERING INFORMATION

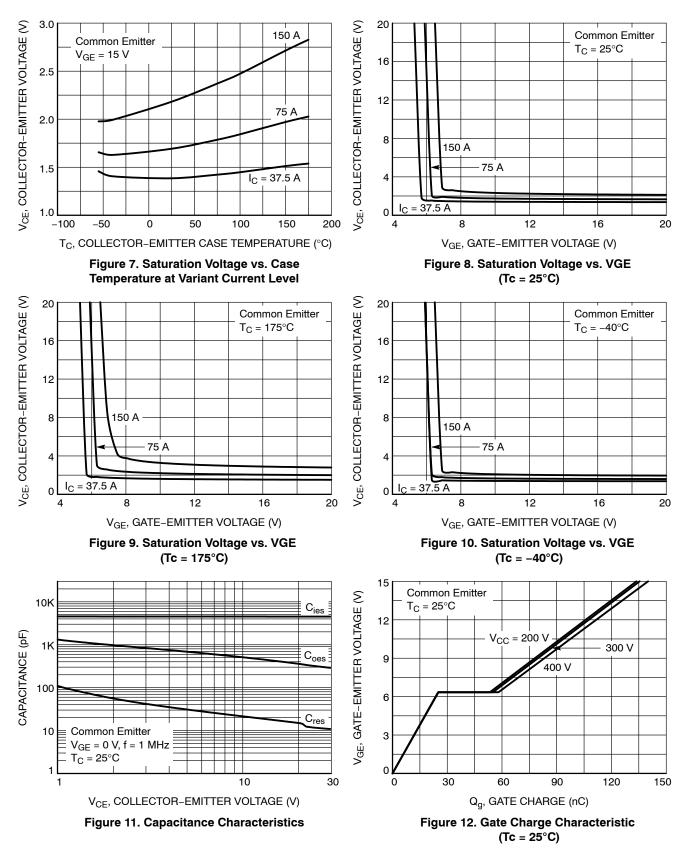
Device	Package	Shipping
AFGHL75T65SQDC	TO-247-3L	30 Units / Rail

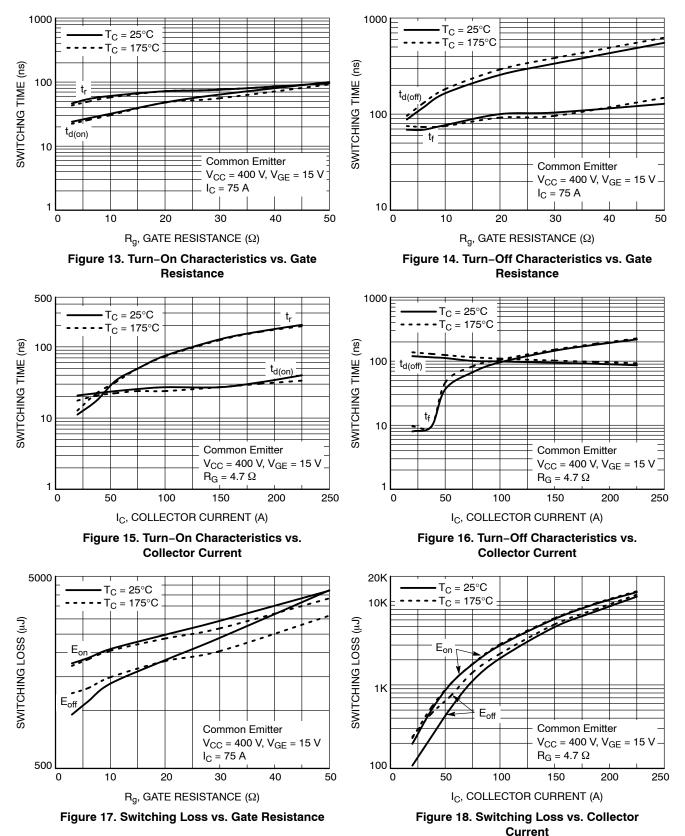
THERMAL CHARACTERISTICS

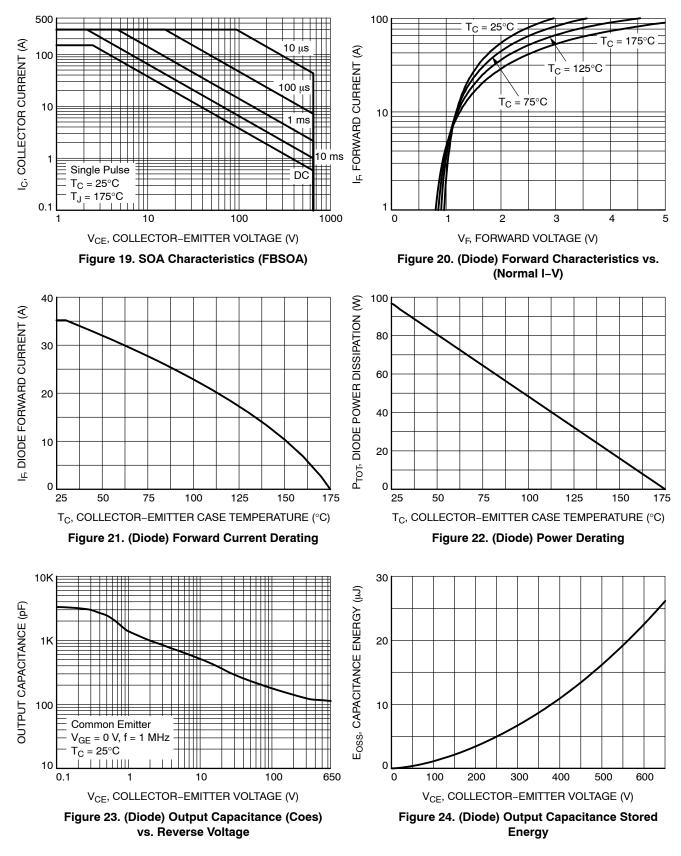
Rating	Symbol	Мах	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ extsf{ heta}JC}$	0.4	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ extsf{ heta}JC}$	1.55	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					
Collector-emitter breakdown voltage, gate-emitter short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.6	-	V/°C
Collector-emitter cut-off current, gate-emitter short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	_	-	250	μΑ
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS						
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 75 \text{ mA}$	V _{GE(th)}	3.4	4.9	6.4	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 75 A V _{GE} = 15 V, I _C = 75 A, T _J = 175°C	V _{CE(sat)}	-	1.6 2.0	2.1 -	V
DYNAMIC CHARACTERISTICS	•					
Input capacitance	$V_{CE} = 30 V,$	C _{ies}	-	4574	-	pF
Output capacitance	V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	289.4	-	
Reverse transfer capacitance		C _{res}	-	11.2	-	
Gate charge total	$V_{CE} = 400 V,$	Qg	-	139	-	nC
Gate-to-emitter charge	I _C = 75 A, V _{GE} = 15 V	Q _{ge}	-	25	-	
Gate-to-collector charge		Q _{gc}	-	33	-	
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD					
Turn-on delay time	$T_{\rm C} = 25^{\circ}{\rm C},$	t _{d(on)}	-	22.4	-	ns
Rise time	V _{CC} = 400 V, I _C = 37.5 A,	t _r	-	19.2	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GE} = 15 V,	t _{d(off)}	-	116.8	-	
Fall time	Inductive Load	t _f	-	9.6	-	
Turn-on switching loss		E _{on}	-	0.48	-	mJ
Turn-off switching loss		E _{off}	-	0.24	-	
Total switching loss		E _{ts}	-	0.72	-	
Turn-on delay time	$T_{\rm C} = 25^{\circ}{\rm C},$	t _{d(on)}	-	24	-	ns
Rise time	$V_{CC} = 400 \text{ V}, \\ I_C = 75 \text{ A}, \\ R_G = 4.7 \Omega, \\ V_{GE} = 15 \text{ V}, \\ \end{array}$	t _r	-	49.6	-	
Turn-off delay time		t _{d(off)}	-	107.2	-	
Fall time	Inductive Load	t _f	-	70.4	-	
Turn-on switching loss		Eon	-	1.68	-	mJ
Turn-off switching loss		E _{off}	-	1.11	-	1
Total switching loss	1	E _{ts}	-	2.79	-	


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, INDU	UCTIVE LOAD			•		
Turn-on delay time	T _C = 175°C,	t _{d(on)}	-	20.8	-	ns
Rise time	V _{CC} = 400 V, I _C = 37.5 A,	t _r	-	22.4	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GE} = 15 V,	t _{d(off)}	-	130	-	
Fall time	Inductive Load	t _f	-	9.6	-	
Turn-on switching loss		E _{on}	-	0.53	-	mJ
Turn-off switching loss		E _{off}	-	0.44	-	
Total switching loss		E _{ts}	-	0.98	-	
Turn-on delay time	T _C = 175°C,	t _{d(on)}	-	24	-	ns
Rise time	$V_{CC} = 400 V,$ $I_{C} = 75 A,$	t _r	-	49.6	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GF} = 15 V,	t _{d(off)}	-	118	-	
Fall time	Inductive Load	t _f	-	78.4	-	
Turn-on switching loss		E _{on}	-	1.76	-	mJ
Turn-off switching loss	-	E _{off}	-	1.42	-	1
Total switching loss		E _{ts}	-	3.19	-	1


Forward Voltage	I _F = 20 A	V _F	-	1.45	1.75	V
	I _F = 20 A, T _J = 175°C		-	1.80	-	
Total Capacitance	V _R = 400 V, f = 1 MHz	С	-	110	-	pF
	V _R = 600 V, f = 1 MHz		-	105	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

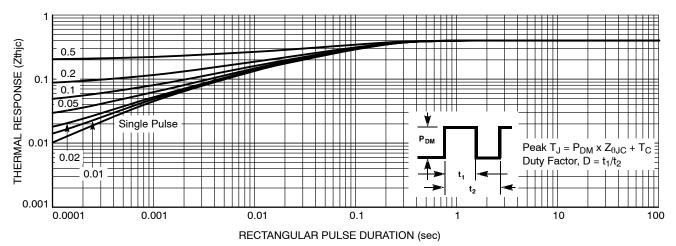


Figure 25. Transient Thermal Impedance of IGBT

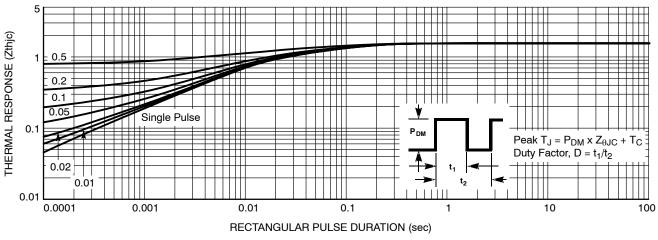
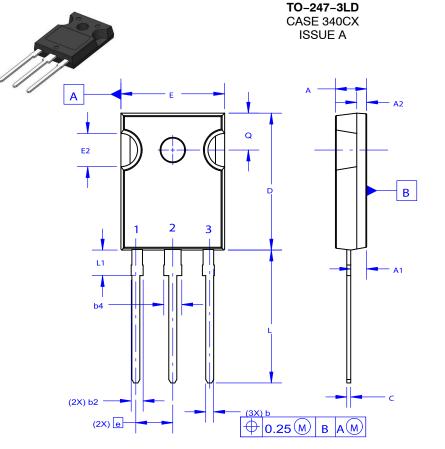



Figure 26. Transient Thermal Impedance of Diode

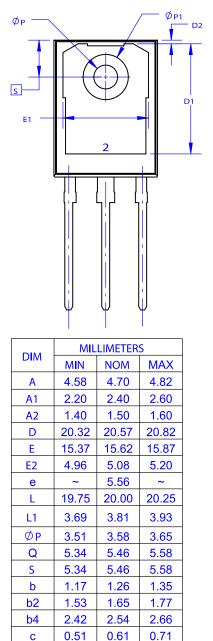
NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

γ

GENERIC **MARKING DIAGRAM*** Х

XXXXX	= Specific Device Code
Α	= Assembly Location


- = Assembly Location
- = Year
- ww = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON93302G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 06 JUL 2020

D1

D2

E1

ØP1

13.08

0.51

12.81

6.60

~

0.93

~

6.80

~

1.35

~

7.00

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>